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Abstract –The track coalescence effect degrades the 
performance of probabilistic data association trackers in 
dense target scenarios.  Recently, it has been observed 
that an opposite effect exists with trackers that utilize 
hard data association, which we denote as the track 
repulsion effect.  In this paper, we examine this effect in 
the context of a crossing target scenario, and explore the 
effectiveness of a track-oriented multi-hypothesis tracker 
in combating this effect, with both single-stage and multi-
stage processing configurations.   

Keywords: Target tracking, multi-hypothesis tracking, 
distributed processing, track coalescence, track repulsion 
effect. 

1 Introduction 
Historically, military surveillance research has focused 
heavily on sensor technology.  Downstream sensor fusion 
and target tracking technology has received less attention, 
and is an area where considerable performance gains 
remain to be achieved. 

A broad overview of approaches to data fusion is 
provided in [1].  Some approaches are appropriate for 
expeditionary operations that do not require real-time 
surveillance; as an example, area clearance prior to 
passage of a high-value unit requires surveillance results 
at the end of the data acquisition period.  This allows for 
powerful batch-processing methods to be brought to bear 
on the problem [2].  On the other hand, scan-based 

methods must be utilized for real-time surveillance.  
Optimal data fusion remains a holy grail of sorts, in that 
all proposed fusion paradigms are known to invoke a 
number of simplifying algorithmic assumptions.   

The most powerful current approach to data fusion is 
multi-hypothesis tracking, which was first introduced in 
the late 1970s [3] and made feasible in the mid-1980s with 
the track-oriented approach [4].  A number of 
enhancements to the basic approach have appeared over 
the years [1]. 

The NURC distributed multi-hypothesis tracker 
(DMHT) is a high-performance, computationally efficient, 
and modular algorithm that was developed for undersea 
surveillance with a network of active sonar systems [5] 
and is being extended in support of the NURC Maritime 
Surveillance System [6].  The unifying theme for much of 
our research in data fusion has been the following: high-
performance tracking requires an effective choice of 
multi-stage data fusion architecture.  Indeed, in specific 
settings, multi-stage fusion is shown to outperform single-
stage, centralized, track-while-fuse processing.  The reader 
is directed to [7] and references therein for further details 
on a number of multi-stage architectures and applications: 
track-before-fuse (ground and undersea domains), fuse-
before-track (large sensor fields), track-extract-track 
(high-clutter maritime domain), and track-break-track 
(difficult multi-target scenarios).  The specific architecture 
that will be relevant in this paper is track-break-track.  In 
sections 2-4, we provide a brief overview to the DMHT, 
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the track-break-track architecture, and tracker 
performance evaluation.  

The track coalescence effect degrades the performance 
of probabilistic data association trackers in dense target 
scenarios [8]; attempts at sub-optimal Bayesian processing 
to combat this effect have been reported [9].  Recently, it 
has been observed that an opposite effect exists with 
trackers that utilize hard data association, which we denote 
as the track repulsion effect [10].  In section 5, we 
examine this effect in the context of a crossing target 
scenario, and explore the effectiveness of a track-oriented 
multi-hypothesis tracker in combating this effect with both 
single-stage and multi-stage processing.  Further analysis 
is provided in section 6, and section 7 gives conclusions 
and recommendations for further work. 
 
2 A Multi-Stage Multi-Hypothesis 

Tracking Approach 
The DMHT is a computationally-efficient, high-
performance, flexible multi-hypothesis tracking approach 
that enables multi-stage fusion processing.  Our 
exploitation of this tool for challenging surveillance 
problems is ongoing, and includes non-military 
applications [11].   

We now illustrate the basic track-oriented multi-
hypothesis tracking (MHT) approach with a simple 
example, shown in figure 1. 
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Figure 1. A simple MHT example. 

 
The example assumes that two tracks, T1 and T2, have 

already been resolved.  That is, prior data association 
decisions have led to a single global hypothesis that 
includes two tracks.  Next, assume that a scan of data is 
received with two measurements, R1 and R2.  Assume 
further that both R1 and R2 can feasibly be associated 
with T1, while only R1 can feasibly be associated with T2.  
This leads to a number of local (or track) hypotheses.  
Note that this set of hypotheses includes track 
continuation in the absence of a measurement (often 
denoted a track coast), as well as new-track hypotheses.  
A second scan of data includes a single measurement R3.  
We assume that R3 provides feasible updates to track 

hypotheses that include R2, as well as spawning a new-
track hypothesis.  Note that we assume that tracks are 
terminated after two coasts, indicated by the red icons in 
figure 1. 

While the example includes a number of track 
hypotheses, it is important to note that each global 
hypothesis provide a compete set of data-association 
decisions that account for all resolved tracks and all sensor 
measurements.  The number of global hypotheses is large, 
even for this simple example; the power of the track-
oriented approach is that we do not require an explicit 
enumeration of global hypotheses. 

Each track hypothesis has an associated log-likelihood 
score that reflects track initiation and termination penalties 
as well as nonlinear filtering scoring; in the case of linear 
Gaussian systems, this scoring is based on the filter 
innovations [12].  The vector c includes the track-
hypothesis scores.  We are interested in the optimal global 
hypothesis, which amounts to identifying a vector x such 
that the global log-likelihood is maximized: the maximum 
likelihood solution.  Having identified this solution 
through a two-stage relaxation approach based on linear 
programming or Lagrangian relaxation [13] (solution is 
noted in yellow in figure 1), many conflicting local 
hypotheses are removed.  In particular, those track 
hypotheses that differ in the first scan past the resolved 
hypothesis layer are removed, while those that differ in the 
more recent past are maintained. 

Having pruned the set of track hypothesis trees (with 5 
surviving track hypotheses), we are ready for a new scan 
of data.  In the example, the resolved layer always lags the 
current time by one scan: thus we have a multi-hypothesis 
example with hypothesis-tree depth (n-scan) of one. 
Multi-stage fusion with the DMHT has two defining 
characteristics that differ from many legacy systems that 
exist today [1].  The first is that each tracker module 
retains measurement-level information at the output.  That 
each, each module performs the following: it removes 
large numbers of measurement data, and associates the 
remaining measurements to form tracks over time.  If the 
tracker is working well and the data is of reasonable 
quality, false measurements will be largely removed, and 
target-originated measurements will be largely maintained, 
and associated into tracks that persist over time with 
limited fragmentation.  Since measurement data is 
available at the tracker output, optimal track fusion and 
state estimation is achievable in downstage tracker 
modules; the cost to achieve this performance benefit is a 
slightly larger bandwidth requirement between processing 
stages.  The second defining characteristic of the DMHT 
is that track fusion is achieved in real time, with a scan-
based approach.  Traditionally, track fusion is performed 
in a post-processing batch mode that is not readily 
amenable to real-time surveillance application [1]. 

The theoretical optimality of unified, batch and 
centralized approaches to fusion and tracking (track-
while-fuse) is at odds with a number of practical 
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considerations.  First, in many surveillance settings 
optimal processing algorithms are either not known, or are 
computationally infeasible.  Second, detection-level data 
may not be available from some propriety or legacy sensor 
systems; thus, in general it may be required to process a 
mix of track-level and measurement-level data.  Finally, as 
we will see in subsequent sections, improved performance 
can be achieved with multi-stage processing that involves 
simpler and less computationally intensive algorithms than 
with near-optimal centralized processing.   

The DMHT provides an ideal tool to explore the 
superior performance that can be achieved with 
distributed, multi-stage algorithms.  Many of the findings 
are seemingly at odds with fundamental results in the 
nonlinear filtering and distributed detection literature, and 
are based on the fundamental sub-optimality of all current 
approaches to target tracking that must contend with data-
association uncertainty. 
 
3 The Track-Break-Track Architecture  
We introduce a novel approach based on a track-break-
track architecture that leverages the modularity in the 
DMHT.  Specifically, we perform a first stage of tracking 
with n-scan=0; this often results in track swapping or 
other undesirable tracking effects.  The value of the first 
tracking stage is that it removes significant numbers of 
extraneous contacts.  Next, we break all contact 
associations, and provide the resulting cleaner set of 
contact data (with FAR close to zero) to a second tracking 
stage, now with n-scan>0.  An illustration of the track-
break-track architecture is in figure 2. 
 

DMHT
n-scan=0

Track labels 
removed

DMHT
n-scan>0

DMHT
n-scan=0

Track labels 
removed

DMHT
n-scan>0

 
Figure 2. The track-break-track architecture. 

 
We will see that the DMHT in a track-break-track 

configuration is effective at combating the track repulsion 
effect.  In particular, computation times are significantly 
reduced, allowing for large values of the hypothesis tree 
depth (n-scan).   Further, tracking results outperform those 
based on a single-stage approach. 

Another application of the track-break-track 
configuration in the context of simulated active sonar 
datasets is in [7]. 

 
4 Tracker Performance Evaluation 
Tracker performance evaluation [14] requires that, subject 
to a global (average) localization threshold, tracks be 
partitioned as target-originated or not.  The former set then 
provides the basis for the computation of track hold or 
track PD (track duration as fraction of target duration), 
fragmentation rate (ratio of number of true tracks to 
targets per unit time), and localization error (average 

discrepancy in meters between track positional estimate 
and target location).  The latter set of tracks provides the 
basis for the false track rate or FTR (average number of 
false tracks per unit time). 

These metrics are insufficient to capture track-swap 
phenomena illustrated in figure 3.  Thus, we introduce an 
iterative scheme that breaks tracks when these are not 
consistently mapped to the same target.  When a sufficient 
number of consecutive track updates is associated with a 
different target (or with none) relative to the global 
mapping of most frequent mappings, a track break is 
introduced.  The methodology relies on a distance 
mapping threshold and a maximum-anomaly threshold.  
Correspondingly, an additional metrics is the broken track 
rate or BTR, i.e. the number of breaks per unit time.   

The BTR metric is crucial, as it reflects the extent of 
tracker output manipulation prior to performance 
evaluation. Further, a BTR>0 is an indication that a track 
swap has occurred. 
 
 

 
Figure 3. Track break (right) in response to a significant 

track-truth mapping anomaly. 
 
5 The Track Repulsion Effect 
As previously observed in the literature [10], automatic 
trackers exhibit a track repulsion effect whereby 
neighbouring targets lead to tracks that are displaced at 
greater distances than the targets themselves.  For targets 
that approach slowly, this displacement leads to track 
swapping.  We study this phenomenon with DMHT.  In 
particular, we use the following experimental setup: 
 

• Ground truth: two constant velocity targets, x 
velocity = 500m / 179sec, y velocity = +/- x 
velocity · tan(target angle) / 2; 

• Contact data: 180 scans of data; 1sec scan 
repetition time; PD=1, FAR=0 (ideal case), 
PD=0.9, FAR=7 (non-ideal case); positional 
measurements with std. dev. error of 1m/s in both 
x and y; 

• Automatic tracker (DMHT) settings: process 
noise q=0.01m2/s3; 

• Performance assessment methodology: starting at 
30deg, decrease target angle until track swap is 
observed: this defines the critical angle; 

• Results are averaged over 50 Monte Carlo 
realizations. 
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Illustrations of the scenario and of the track swapping 
phenomenon are in figures 4-5. 
 

-250 -200 -150 -100 -50 0 50 100 150 200 250

-250

-200

-150

-100

-50

0

50

100

150

200

250

1

2

Ground truth

Contacts

Tracks

Ground truth

Contacts

Tracks

 
Figure 4. One realization (wide view). 
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Figure 5. One realization (close-up view). 

 
We first study the ideal case of detection data with 

PD=1 and FAR=0.  The resulting critical angle as a 
function of the hypothesis depth in multi-hypothesis 
processing, or n-scan, is given in figure 6.  We see that the 
impact of the phenomenon decreases as we increase the 
effectiveness of the tracking algorithm, though this comes 
at increasing computational expense.  Further, we note 
that the performance benefits saturate beyond n-scan=3. 

For the general case (PD<1, FAR>0), a more effective 
approach to combating the track swap phenomenon is 
required.  We introduce a novel approach based on a 
track-break-track architecture that leverages the 
modularity in the DMHT.  Specifically, we perform a first 
stage of tracking with n-scan=0; this often results in track 
swapping.  The value of the first tracking stage is that it 
removes significant number of extraneous contacts.  Next, 
we break all contact associations, and provide the 
resulting cleaner set of contact data (with FAR close to 
zero) to a second tracking stage, now with n-scan>0. 

As shown in figure 7, the results of the track-break-
track approach are impressive.  For all n-scan settings, we 

achieve a significant reduction in the critical angle for 
track swap, and at significantly lower computational 
expense.  Interestingly, it appears that we continue to 
achieve further performance benefits with increasing n-
scan, even as the single-stage architecture has reached 
saturation. 
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Figure 6. Decreased track swapping with increasing 

hypothesis decision latency. 
 
 

 
Figure 7. Lower critical angle for all n-scan in the track-
break-track approach.  Results are based on PD=0.9 and 

FAR=7. 
 
6 Further Analysis 
It is of interest to understand the track repulsion effect at a 
simple analytical level, particularly the sub-optimality of 
scan-based tracking with respect to optimal track 
estimation as achieved with a batch, maximum likelihood 
(ML) approach. 

We consider a simple scenario.  Two targets in one-
dimensional Cartesian space are observed with linear 
measurements in Gaussian noise; for target { }2,1∈i , we 
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denote by  the state at time k, and measurements are 

given by the following, where  is a zero 
mean Gaussian random variable that is uncorrelated with 
other measurement errors: 

)(i
kX

( 2)( ,0~ σNv i
k )

 
NkvXY i

k
i

k
i

k ,...,1,)()()( =+= .      (1) 
 
Assume that both targets are known to be stationary and at 
unknown locations equidistant from the coordinate system 
origin: 
 

( ) NkXXX kk ,...,1,2)1( ==−= .     (2) 
 
For simplicity, we neglect false contacts and missed 
detections.  Thus, the measurement-origin uncertainty is 
limited to confusion as to which target gives rise to which 
measurement.  Assume that a large number N of data 
scans is available.    
It can be shown that, for , the ML solution is 
given by the following location estimates 

∞→N
)1(X̂  and )2(X̂ : 

 
XXX =−= )2()1( ˆˆ .        (3) 

 
That is, the ML solution does not suffer any track-
repulsion bias.  On the other hand, for , the scan-
based solution as obtained e.g. with a multi-hypothesis 
tracker with a constant position kinematic motion model is 
the following, where 

∞→N

( )2,0~, σNwv  are uncorrelated 
random variables:  
 

{ }[ wXvXEXX +−+=−= ,maxˆˆ )2()1( ] .   (4) 
 
The track repulsion effect is given by the displacement 

XX −)1(ˆ , or ( )XX −− )2(ˆ .  Figure 8 illustrates its 
magnitude for a range of values for target spacing ( X2 ), 
and assuming 10=σ [m].  We see that the scan-based 
solution suffers a non-trivial bias for sufficiently close 
targets.  For example, at a target spacing equal to the 
measurement error standard deviation of 10m, the track 
displacement is approximately 2m, i.e. the tracks are 
approximately 14m apart.  This example helps to 
understand the same fundamental phenomenon leading to 
the track-swapping results in the previous section. 
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Figure 8. Track displacement as a function of target 

separation, for scan-based tracking of stationary targets. 
 
7 Conclusions and Future Directions 
We have found that the NURC DMHT in a track-break-
track configuration is effective at combating the track 
repulsion effect in difficult multi-target scenarios.  In 
particular, computation times are limited, allowing for 
large settings for the hypothesis tree depth.   Tracking 
results outperform the single-stage approach, as 
demonstrated by the smaller critical angles for track 
swapping.  Future work on this topic should include an 
investigation of a wider range of scenario settings, and a 
comparison with other tracking approaches including 
those documented in [10].   

Additionally, the track-break-track approach should be 
explored in multi-sensor settings where complementary 
data is available from sensors with widely-varying update 
rates.  Figure 9 illustrates this setting.  
 

target-originated
measurements

false returns

low-rate
feature-rich data

target-originated
measurements

false returns

low-rate
feature-rich data

 
Figure 9. Multi-scale data for which the track-break-track 

approach holds promise. 
 

As shown in the figure, assume that we have a crossing-
target scenario with a primary sensor that provides rapid 
data scans.  As seen earlier, it is difficult to determine 

2229



whether a target crossing has occurred, particularly if the 
target trajectories cross slowly relative to the scan rate.  
Assume that a secondary sensor provides highly 
informative target feature data, though with a low scan 
rate.   

In such a scenario, use of the track-break-track 
approach should be explored.  In particular, in the first 
tracking stage we would only process data from the 
primary sensor, with the objective of significantly 
reducing the false returns.  In this first stage, we would 
have little confidence that successful tracking through the 
crossing will have been achieved.  Subsequently, track 
labels are removed and the data is tracked again, this time 
with the inclusion of the feature-rich secondary sensor 
data, and with a large n-scan setting.  The feature data 
coupled with the large n-scan setting will allow for 
successful determination of whether the targets have 
crossed or not. 

Note that our approach as outlined here obviates the 
need for determining when association hypotheses are 
high-likelihood or not, which would be required in a 
cumbersome alternative two-stage approach to the 
problem whereby tracklet would be formed before and 
after the target crossing, followed by tracklet fusion with 
the inclusion of secondary sensor data.  Note that the first-
stage tracklet formation would utilize small association 
gates, i.e. there would necessarily be high fragmentation 
resulting from the first stage of tracking. 

Finally, it is not clear whether a single-stage processing 
approach could effectively address this tracking problem.  
The required n-scan setting for effective association of 
secondary sensor returns would lead to computational 
intractability. 
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